
 
 
 
Fuzzy Systems and Soft Computing 
ISSN : 1819-4362 
 

COMPARATIVE ANALYSIS OF STATISTICAL TECHNIQUES IN MACHINE LEARNING: 
EFFICIENCY, INTERPRETABILITY, AND REAL-WORLD APPLICATIONS 

 
Dr.Sheeja K, Assistant Professor, Department of Computer Science, Sies(Nerul) College Of Arts 

Science And Commerce, Navi Mumbai 
 
ABSTRACT: 
Statistical techniques are integral to machine learning (ML), providing a theoretical foundation for 
model development, inference, and decision-making. This paper presents a comparative analysis of 
various statistical techniques used in ML, focusing on their efficiency, interoperability, and applicability 
in real-world problems. We analyze widely adopted techniques such as regression models, decision 
trees, support vector machines, and clustering methods. A comparative evaluation based on 
computational complexity, generalization ability, and practical implementation is provided. Finally, the 
study explores applications in healthcare, finance, and natural language processing (NLP), emphasizing 
the importance of choosing the right statistical technique for specific ML tasks. 
Keywords Machine Learning, Statistical Techniques, Model Interpretability, Efficiency, Real- World 
Applications, Regression, Classification, Clustering, Dimensionality Reduction 
 
INTRODUCTION : 
Machine learning relies heavily on statistical techniques to extract patterns from data and make 
informed predictions ([5]). The efficiency and interpretability of these techniques vary, impacting their 
suitability for different applications. This paper aims to compare key statistical techniques in ML, 
discussing their theoretical foundations, computational efficiency, and effectiveness in real-world 
scenarios. By understanding the strengths and limitations of each approach, ML practitioner scan make 
informed choices when developing predictive models ([7]). 
 
METHODOLOGY: 
Selection of Techniques: Regression, decision trees, support vector machines (SVMs), clustering 
methods, and dimensionality reduction techniques ([6]). 
Evaluation Metrics: Computational efficiency, interpretability, predictive accuracy, and scalability. 
Data Sources: Real-world data sets from healthcare, finance, and NLP domains. 
 
REGRESSION MODELS 
Linear Regression: Assumes a linear relationship between input and output variables, optimized using 
the least squares method ([8]). The general form of a linear equation is: 

y=Xβ+ϵy = X\beta + \epsilony=Xβ+ϵ 
where yyy represents the response variable, XXX denotes the input data, and ϵ\epsilonϵ is the error term. 
The response variable is expressed as a weighted sum of input data, with the error term following a 
normal distribution, making the responses normally distributed as well. However, estimating β\betaβ 
using ordinary least squares (OLS) can lead to high variance, meaning small changes in observations 
may cause significant fluctuations in parameter estimates. This instability is undesirable in machine 
learning, where models should be robust to minor variations in data. High variance in OLS can result in 
large absolute values of parameter estimates, requiring regularization techniques to control model 
complexity and improve stability. 
Bayesian Regression: Integrates prior probability distributions to enhance estimation accuracy, 
especially when dealing with limited data (Gelman et al., 2013). Unlike traditional regression, Bayesian 
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regression incorporates prior knowledge about model parameters and updates these beliefs based on 
observed data. The posterior distribution of parameters is computed using Bayes’ theorem: 
Posterior=Likelihood×PriorEvidence\text{Posterior} = \frac{\text{Likelihood} \times 
\text{Prior}}{\text{Evidence}}Posterior=EvidenceLikelihood×Prior  
The prior must be independent of the likelihood, meaning that it cannot be derived from the same data 
being used for updating. Otherwise, it would result in biased uncertainty reduction. The evidence term 
serves as a normalization factor to ensure the posterior distribution sums to one. 
Comparison: Bayesian regression offers greater flexibility than linear regression since it allows 
continuous updates to parameter estimates as new data becomes available. However, this approach is 
computationally intensive compared to linear regression, making it less practical for large-scale datasets. 
 
CLASSIFICATION METHODS: 
 
DECISION TREES VS RANDOM FORESTS : 
Decision Trees: Simple and interpretable models that utilize entropy or the Gini index for classification. 
A decision tree evaluates conditions and makes decisions based on whether they are true or false. When 
used for categorization, it is referred to as a classification tree, whereas when predicting numerical 
values, it is known as a regression tree. 
Random Forests: An ensemble learning technique that enhances model generalization by averaging the 
predictions of multiple decision trees ([2]). This method involves two key steps: bootstrapping, where 
multiple random subsets of the data are created, and aggregation, where the results of individual trees 
are combined to improve accuracy and robustness. 
Comparison: While decision trees are straightforward and easy to interpret, they tend to overfit the 
data, making them highly sensitive to variations and leading to high variance. This can result in poor 
generalization. In contrast, random forests mitigate overfitting by reducing correlation between 
individual trees, leading to better predictive performance, though at the cost of reduced interpretability. 
 
SUPPORT VECTOR MACHINES(SVMS) VS LOGISTIC REGRESSION : 

Support Vector Machines (SVMs): Utilize kernel functions to project data into higher-
dimensional spaces, enhancing classification performance ([3]). The decision boundary is 
established by positioning the threshold equidistantly between observations, ensuring that 
margins remain consistent. Classification validation helps determine the number of allowable 
misclassifications within the soft margin to optimize classification accuracy. The kernel function 
systematically identifies the optimal support vector classifier in higher dimensions. 
Logistic Regression: A probabilistic model designed for binary classification tasks. Since the 
response variable is categorical, a linear regression model is not suitable. Instead, logistic 
regression employs an S-curve (sigmoid function) to estimate probabilities. A threshold value is 
set to classify data points based on their predicted probability. 
Comparison: SVMs excel in handling complex decision boundaries but are computationally 
demanding. In contrast, logistic regression is more efficient and interpretable, making it a 
practical choice for simpler classification problems. 

 
CLUSTERING TECHNIQUES : 
K-Means vs. Gaussian Mixture Models (GMMs) 
K-Means: A hard clustering technique that divides data into k distinct clusters based on centric 
positions. Initially, the number of clusters (k) is determined, and data points are assigned to the nearest 
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cluster based on distance measurements. The cancroids are then recalculated as the mean of all points 
within each cluster. This iterative process continues until cluster assignments stabilize, minimizing total 
variance within clusters. 
GMMs: A probabilistic approach that models data as a mixture of multiple Gaussian distributions ([1]). 
The data is assumed to be from gaussian distribution and tries to fit maximum likelihood estimation 
provided it is not grouped into  
Several clusters. In such case we need to fit gaussian one achcluster. GMMs model first guess where 
each gaussian should be centered, how their covariance matrix should look like and how much weight 
should be provided. 
 

Comparison: K-Means is a fast and scalable clustering method but assumes that clusters are spherical in shape. 
In contrast, Gaussian Mixture Models (GMMs) offer greater flexibility by allowing clusters to take different 
shapes, though they require more computational resources. While K-Means assigns a hard clustering label to each 
data point, GMMs provide soft clustering by assigning probabilities to indicate the likelihood of a data point 
belonging to a particular cluster. 
 
DIMENSIONALITY REDUCTION : 
Principal Component Analysis (PCA) vs Linear Discriminate Analysis (LDA) 
Principal Component Analysis (PCA): A technique that identifies orthogonal components to maximize variance 
in the dataset (Jolliffe, 2002). PCA reduces the dimensionality of data, improving storage efficiency and 
computational performance. It is commonly used for data visualization and feature extraction. When certain 
features are correlated, PCA helps transform them into a set of uncorrelated variables by representing them as 
linear combinations of the original features. This allows for dimensionality reduction while preserving as much 
variance as possible in the data.. 
 
 

 
Figure:1Transformation of 2D to1 D preserving the variance 

Linear Discriminate Analysis (LDA): Focuses on maximizing class reparability while reducing 
dimensionality. It leverages eigenvalues and eigenvectors to establish separation boundaries between 
classes. Unlike PCA, which aims to capture the maximum variance in data, LDA projects data onto an 
axis that optimizes class distinction. When reducing to two dimensions, LDA first computes the mean of 
different groups and maximizes the difference between them, ensuring better separation. For effective 
classification, the variance within each class should be minimized. 
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Computational Complexity: Evaluates the time complexity of different techniques, classifying 
computational problems based on their inherent difficulty and relationships. At the core of this analysis 
is the algorithm, as each algorithm varies in efficiency. To assess efficiency, Big-O notation is used, 
which describes how the runtime or space requirements of an algorithm scale as the input size increases. 
Accuracy vs. Interpretability Trade-off: Performance metrics for different techniques are analyzed to 
balance accuracy and interpretability. Improving accuracy often involves training multiple models and 
cross-validating their performance. Fine-tuning model parameters is crucial for achieving optimal 
accuracy, and cross-validation should be applied to enhance model reliability (Table 1). 

Linear Regression O(n^2) High Moderate High 

Bayesian Regression O(n^3) Moderate High Low 

Decision Trees O(nlogn) High Moderate Moderate 

Random Forests O(n log n*k) Low High High 

SVMs O(n^2) Moderate High Low 

Logistic Regression O(n^2) High Moderate High 

K-Means O(nkt) High Moderate High 

GMMs O(n^3) Moderate High Low 

PCA O(n^3) Moderate Moderate High 

LDA O(n^3) Low High Moderate 

Table1: Computational Complexity, Inerrability, and accuracy 
 
REAL-WORLD APPLICATIONS 

● Healthcare: Logistic regression is commonly used for disease prediction, while PCA is 
employed for reducing the dimensionality of medical imaging data. 

● Finance: Bayesian regression and random forests are utilized for risk assessment and fraud 
detection. 

● NLP: SVMs and LDA are crucial in sentiment analysis and text classification 
tasks.anddecisiontreesprovidetransparency,morecomplexmodelssuchasSVMsandGMMsenhance 
accuracy at the cost of computational resources. The choice of statistical technique should align with 
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application-specific constraints, including data availability, processing power, and model 
interpretabilityrequirements.Futureresearchshouldfocusonhybridapproachesthatbalancethese trade-offs 
effectively. 

 
REFERENCES: 

[1] Bishop,C.(2006).PatternRecognitionandMachineLearning. Springer. 
[2] Breiman, L.(2001).RandomForests.MachineLearning, 45(1),5-32. 
[3] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-
297. 
[4] Fabian Pedregosa et. al. (2011) Scikit-learn: Machine Learning in Python. Journalof Machine 
Learning Research 12, 2825-2830. 
[5] GarethJameset. al.(2021).AnIntroductiontoStatisticalLearning.Springer 
[6] Hastie,T.,Tibshirani,R.,&Friedman,J.(2009).TheElementsofStatisticalLearning. Springer. 
[7] Kevin. P. Murphy. (2012). Machine Learning a Probabilistic Perspective. MIT press, 
Cambridge, MA. 
[8] Seber&Lee.(2012). LinearRegressionAnalysis,JohnWiley&Sons. 


